Metamath Proof Explorer


Theorem grpinv11

Description: The group inverse is one-to-one. (Contributed by NM, 22-Mar-2015) (Proof shortened by SN, 8-Jul-2025)

Ref Expression
Hypotheses grpinvinv.b B = Base G
grpinvinv.n N = inv g G
grpinv11.g φ G Grp
grpinv11.x φ X B
grpinv11.y φ Y B
Assertion grpinv11 φ N X = N Y X = Y

Proof

Step Hyp Ref Expression
1 grpinvinv.b B = Base G
2 grpinvinv.n N = inv g G
3 grpinv11.g φ G Grp
4 grpinv11.x φ X B
5 grpinv11.y φ Y B
6 fveq2 N X = N Y N N X = N N Y
7 1 2 grpinvinv G Grp X B N N X = X
8 3 4 7 syl2anc φ N N X = X
9 1 2 grpinvinv G Grp Y B N N Y = Y
10 3 5 9 syl2anc φ N N Y = Y
11 8 10 eqeq12d φ N N X = N N Y X = Y
12 6 11 imbitrid φ N X = N Y X = Y
13 fveq2 X = Y N X = N Y
14 12 13 impbid1 φ N X = N Y X = Y