Metamath Proof Explorer
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)
|
|
Ref |
Expression |
|
Hypotheses |
grpinvcl.b |
|
|
|
grpinvcl.n |
|
|
Assertion |
grpinvcl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvcl.b |
|
| 2 |
|
grpinvcl.n |
|
| 3 |
1 2
|
grpinvf |
|
| 4 |
3
|
ffvelcdmda |
|