Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcld.b | ||
| grpinvcld.n | |||
| grpinvcld.g | |||
| grpinvcld.1 | |||
| Assertion | grpinvcld |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcld.b | ||
| 2 | grpinvcld.n | ||
| 3 | grpinvcld.g | ||
| 4 | grpinvcld.1 | ||
| 5 | 1 2 | grpinvcl | |
| 6 | 3 4 5 | syl2anc |