Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvcld.b | ||
grpinvcld.n | |||
grpinvcld.g | |||
grpinvcld.1 | |||
Assertion | grpinvcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcld.b | ||
2 | grpinvcld.n | ||
3 | grpinvcld.g | ||
4 | grpinvcld.1 | ||
5 | 1 2 | grpinvcl | |
6 | 3 4 5 | syl2anc |