Metamath Proof Explorer


Theorem grpinvf

Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b B = Base G
grpinvcl.n N = inv g G
Assertion grpinvf G Grp N : B B

Proof

Step Hyp Ref Expression
1 grpinvcl.b B = Base G
2 grpinvcl.n N = inv g G
3 eqid + G = + G
4 eqid 0 G = 0 G
5 1 3 4 grpinveu G Grp x B ∃! y B y + G x = 0 G
6 riotacl ∃! y B y + G x = 0 G ι y B | y + G x = 0 G B
7 5 6 syl G Grp x B ι y B | y + G x = 0 G B
8 1 3 4 2 grpinvfval N = x B ι y B | y + G x = 0 G
9 7 8 fmptd G Grp N : B B