Metamath Proof Explorer


Theorem grpinvf1o

Description: The group inverse is a one-to-one onto function. (Contributed by NM, 22-Oct-2014) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpinvinv.b B = Base G
grpinvinv.n N = inv g G
grpinv11.g φ G Grp
Assertion grpinvf1o φ N : B 1-1 onto B

Proof

Step Hyp Ref Expression
1 grpinvinv.b B = Base G
2 grpinvinv.n N = inv g G
3 grpinv11.g φ G Grp
4 1 2 grpinvf G Grp N : B B
5 3 4 syl φ N : B B
6 5 ffnd φ N Fn B
7 1 2 grpinvcnv G Grp N -1 = N
8 3 7 syl φ N -1 = N
9 8 fneq1d φ N -1 Fn B N Fn B
10 6 9 mpbird φ N -1 Fn B
11 dff1o4 N : B 1-1 onto B N Fn B N -1 Fn B
12 6 10 11 sylanbrc φ N : B 1-1 onto B