Metamath Proof Explorer


Theorem grpinvfn

Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvfn.b B = Base G
grpinvfn.n N = inv g G
Assertion grpinvfn N Fn B

Proof

Step Hyp Ref Expression
1 grpinvfn.b B = Base G
2 grpinvfn.n N = inv g G
3 riotaex ι y B | y + G x = 0 G V
4 eqid + G = + G
5 eqid 0 G = 0 G
6 1 4 5 2 grpinvfval N = x B ι y B | y + G x = 0 G
7 3 6 fnmpti N Fn B