Metamath Proof Explorer


Theorem grpinvfval

Description: The inverse function of a group. For a shorter proof using ax-rep , see grpinvfvalALT . (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 7-Aug-2013) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses grpinvval.b B = Base G
grpinvval.p + ˙ = + G
grpinvval.o 0 ˙ = 0 G
grpinvval.n N = inv g G
Assertion grpinvfval N = x B ι y B | y + ˙ x = 0 ˙

Proof

Step Hyp Ref Expression
1 grpinvval.b B = Base G
2 grpinvval.p + ˙ = + G
3 grpinvval.o 0 ˙ = 0 G
4 grpinvval.n N = inv g G
5 fveq2 g = G Base g = Base G
6 5 1 eqtr4di g = G Base g = B
7 fveq2 g = G + g = + G
8 7 2 eqtr4di g = G + g = + ˙
9 8 oveqd g = G y + g x = y + ˙ x
10 fveq2 g = G 0 g = 0 G
11 10 3 eqtr4di g = G 0 g = 0 ˙
12 9 11 eqeq12d g = G y + g x = 0 g y + ˙ x = 0 ˙
13 6 12 riotaeqbidv g = G ι y Base g | y + g x = 0 g = ι y B | y + ˙ x = 0 ˙
14 6 13 mpteq12dv g = G x Base g ι y Base g | y + g x = 0 g = x B ι y B | y + ˙ x = 0 ˙
15 df-minusg inv g = g V x Base g ι y Base g | y + g x = 0 g
16 1 fvexi B V
17 p0ex V
18 17 16 unex B V
19 ssun2 B B
20 riotacl ∃! y B y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙ B
21 19 20 sselid ∃! y B y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙ B
22 ssun1 B
23 riotaund ¬ ∃! y B y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙ =
24 riotaex ι y B | y + ˙ x = 0 ˙ V
25 24 elsn ι y B | y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙ =
26 23 25 sylibr ¬ ∃! y B y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙
27 22 26 sselid ¬ ∃! y B y + ˙ x = 0 ˙ ι y B | y + ˙ x = 0 ˙ B
28 21 27 pm2.61i ι y B | y + ˙ x = 0 ˙ B
29 28 rgenw x B ι y B | y + ˙ x = 0 ˙ B
30 16 18 29 mptexw x B ι y B | y + ˙ x = 0 ˙ V
31 14 15 30 fvmpt G V inv g G = x B ι y B | y + ˙ x = 0 ˙
32 fvprc ¬ G V inv g G =
33 mpt0 x ι y B | y + ˙ x = 0 ˙ =
34 32 33 eqtr4di ¬ G V inv g G = x ι y B | y + ˙ x = 0 ˙
35 fvprc ¬ G V Base G =
36 1 35 eqtrid ¬ G V B =
37 36 mpteq1d ¬ G V x B ι y B | y + ˙ x = 0 ˙ = x ι y B | y + ˙ x = 0 ˙
38 34 37 eqtr4d ¬ G V inv g G = x B ι y B | y + ˙ x = 0 ˙
39 31 38 pm2.61i inv g G = x B ι y B | y + ˙ x = 0 ˙
40 4 39 eqtri N = x B ι y B | y + ˙ x = 0 ˙