Metamath Proof Explorer


Theorem grpinvfvi

Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypothesis grpinvfvi.t N = inv g G
Assertion grpinvfvi N = inv g I G

Proof

Step Hyp Ref Expression
1 grpinvfvi.t N = inv g G
2 fvi G V I G = G
3 2 fveq2d G V inv g I G = inv g G
4 base0 = Base
5 eqid inv g = inv g
6 4 5 grpinvfn inv g Fn
7 fn0 inv g Fn inv g =
8 6 7 mpbi inv g =
9 fvprc ¬ G V I G =
10 9 fveq2d ¬ G V inv g I G = inv g
11 fvprc ¬ G V inv g G =
12 8 10 11 3eqtr4a ¬ G V inv g I G = inv g G
13 3 12 pm2.61i inv g I G = inv g G
14 1 13 eqtr4i N = inv g I G