Metamath Proof Explorer


Theorem grpinvhmeo

Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J = TopOpen G
tgpinv.5 I = inv g G
Assertion grpinvhmeo G TopGrp I J Homeo J

Proof

Step Hyp Ref Expression
1 tgpcn.j J = TopOpen G
2 tgpinv.5 I = inv g G
3 1 2 tgpinv G TopGrp I J Cn J
4 tgpgrp G TopGrp G Grp
5 eqid Base G = Base G
6 5 2 grpinvcnv G Grp I -1 = I
7 4 6 syl G TopGrp I -1 = I
8 7 3 eqeltrd G TopGrp I -1 J Cn J
9 ishmeo I J Homeo J I J Cn J I -1 J Cn J
10 3 8 9 sylanbrc G TopGrp I J Homeo J