Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpinvid
Next ⟩
grplcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpinvid
Description:
The inverse of the identity element of a group.
(Contributed by
NM
, 24-Aug-2011)
Ref
Expression
Hypotheses
grpinvid.u
⊢
0
˙
=
0
G
grpinvid.n
⊢
N
=
inv
g
⁡
G
Assertion
grpinvid
⊢
G
∈
Grp
→
N
⁡
0
˙
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
grpinvid.u
⊢
0
˙
=
0
G
2
grpinvid.n
⊢
N
=
inv
g
⁡
G
3
eqid
⊢
Base
G
=
Base
G
4
3
1
grpidcl
⊢
G
∈
Grp
→
0
˙
∈
Base
G
5
eqid
⊢
+
G
=
+
G
6
3
5
1
grplid
⊢
G
∈
Grp
∧
0
˙
∈
Base
G
→
0
˙
+
G
0
˙
=
0
˙
7
4
6
mpdan
⊢
G
∈
Grp
→
0
˙
+
G
0
˙
=
0
˙
8
3
5
1
2
grpinvid1
⊢
G
∈
Grp
∧
0
˙
∈
Base
G
∧
0
˙
∈
Base
G
→
N
⁡
0
˙
=
0
˙
↔
0
˙
+
G
0
˙
=
0
˙
9
4
4
8
mpd3an23
⊢
G
∈
Grp
→
N
⁡
0
˙
=
0
˙
↔
0
˙
+
G
0
˙
=
0
˙
10
7
9
mpbird
⊢
G
∈
Grp
→
N
⁡
0
˙
=
0
˙