Metamath Proof Explorer


Theorem grpinvnz

Description: The inverse of a nonzero group element is not zero. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b B = Base G
grpinvnzcl.z 0 ˙ = 0 G
grpinvnzcl.n N = inv g G
Assertion grpinvnz G Grp X B X 0 ˙ N X 0 ˙

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b B = Base G
2 grpinvnzcl.z 0 ˙ = 0 G
3 grpinvnzcl.n N = inv g G
4 fveq2 N X = 0 ˙ N N X = N 0 ˙
5 4 adantl G Grp X B N X = 0 ˙ N N X = N 0 ˙
6 1 3 grpinvinv G Grp X B N N X = X
7 6 adantr G Grp X B N X = 0 ˙ N N X = X
8 2 3 grpinvid G Grp N 0 ˙ = 0 ˙
9 8 ad2antrr G Grp X B N X = 0 ˙ N 0 ˙ = 0 ˙
10 5 7 9 3eqtr3d G Grp X B N X = 0 ˙ X = 0 ˙
11 10 ex G Grp X B N X = 0 ˙ X = 0 ˙
12 11 necon3d G Grp X B X 0 ˙ N X 0 ˙
13 12 3impia G Grp X B X 0 ˙ N X 0 ˙