Metamath Proof Explorer


Theorem grpinvnzcl

Description: The inverse of a nonzero group element is a nonzero group element. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Hypotheses grpinvnzcl.b B = Base G
grpinvnzcl.z 0 ˙ = 0 G
grpinvnzcl.n N = inv g G
Assertion grpinvnzcl G Grp X B 0 ˙ N X B 0 ˙

Proof

Step Hyp Ref Expression
1 grpinvnzcl.b B = Base G
2 grpinvnzcl.z 0 ˙ = 0 G
3 grpinvnzcl.n N = inv g G
4 eldifi X B 0 ˙ X B
5 1 3 grpinvcl G Grp X B N X B
6 4 5 sylan2 G Grp X B 0 ˙ N X B
7 eldifsn X B 0 ˙ X B X 0 ˙
8 1 2 3 grpinvnz G Grp X B X 0 ˙ N X 0 ˙
9 8 3expb G Grp X B X 0 ˙ N X 0 ˙
10 7 9 sylan2b G Grp X B 0 ˙ N X 0 ˙
11 eldifsn N X B 0 ˙ N X B N X 0 ˙
12 6 10 11 sylanbrc G Grp X B 0 ˙ N X B 0 ˙