Metamath Proof Explorer


Theorem grpinvval2

Description: A df-neg -like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses grpsubcl.b B = Base G
grpsubcl.m - ˙ = - G
grpinvsub.n N = inv g G
grpinvval2.z 0 ˙ = 0 G
Assertion grpinvval2 G Grp X B N X = 0 ˙ - ˙ X

Proof

Step Hyp Ref Expression
1 grpsubcl.b B = Base G
2 grpsubcl.m - ˙ = - G
3 grpinvsub.n N = inv g G
4 grpinvval2.z 0 ˙ = 0 G
5 1 4 grpidcl G Grp 0 ˙ B
6 eqid + G = + G
7 1 6 3 2 grpsubval 0 ˙ B X B 0 ˙ - ˙ X = 0 ˙ + G N X
8 5 7 sylan G Grp X B 0 ˙ - ˙ X = 0 ˙ + G N X
9 1 3 grpinvcl G Grp X B N X B
10 1 6 4 grplid G Grp N X B 0 ˙ + G N X = N X
11 9 10 syldan G Grp X B 0 ˙ + G N X = N X
12 8 11 eqtr2d G Grp X B N X = 0 ˙ - ˙ X