Metamath Proof Explorer


Theorem grpinvval2

Description: A df-neg -like equation for inverse in terms of group subtraction. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses grpsubcl.b B=BaseG
grpsubcl.m -˙=-G
grpinvsub.n N=invgG
grpinvval2.z 0˙=0G
Assertion grpinvval2 GGrpXBNX=0˙-˙X

Proof

Step Hyp Ref Expression
1 grpsubcl.b B=BaseG
2 grpsubcl.m -˙=-G
3 grpinvsub.n N=invgG
4 grpinvval2.z 0˙=0G
5 1 4 grpidcl GGrp0˙B
6 eqid +G=+G
7 1 6 3 2 grpsubval 0˙BXB0˙-˙X=0˙+GNX
8 5 7 sylan GGrpXB0˙-˙X=0˙+GNX
9 1 3 grpinvcl GGrpXBNXB
10 1 6 4 grplid GGrpNXB0˙+GNX=NX
11 9 10 syldan GGrpXB0˙+GNX=NX
12 8 11 eqtr2d GGrpXBNX=0˙-˙X