| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpissubg.b |
|
| 2 |
|
grpissubg.s |
|
| 3 |
|
simpl |
|
| 4 |
3
|
adantl |
|
| 5 |
2
|
grpbn0 |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
|
grpmnd |
|
| 8 |
|
mndmgm |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
grpmnd |
|
| 11 |
|
mndmgm |
|
| 12 |
10 11
|
syl |
|
| 13 |
9 12
|
anim12i |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
simpr |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
simpr |
|
| 19 |
18
|
anim1i |
|
| 20 |
1 2
|
mgmsscl |
|
| 21 |
15 17 19 20
|
syl3anc |
|
| 22 |
21
|
ralrimiva |
|
| 23 |
|
simpl |
|
| 24 |
23
|
adantr |
|
| 25 |
|
simplr |
|
| 26 |
1
|
sseq2i |
|
| 27 |
26
|
biimpi |
|
| 28 |
27
|
adantr |
|
| 29 |
28
|
adantl |
|
| 30 |
|
ovres |
|
| 31 |
30
|
adantl |
|
| 32 |
|
oveq |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
31 35
|
eqtr3d |
|
| 37 |
36
|
ralrimivva |
|
| 38 |
24 25 2 29 37
|
grpinvssd |
|
| 39 |
38
|
imp |
|
| 40 |
|
eqid |
|
| 41 |
2 40
|
grpinvcl |
|
| 42 |
41
|
ad4ant24 |
|
| 43 |
39 42
|
eqeltrrd |
|
| 44 |
22 43
|
jca |
|
| 45 |
44
|
ralrimiva |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
1 46 47
|
issubg2 |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
4 6 45 49
|
mpbir3and |
|
| 51 |
50
|
ex |
|