Metamath Proof Explorer
Description: The left inverse of a group element. Deduction associated with
grplinv . (Contributed by SN, 29-Jan-2025)
|
|
Ref |
Expression |
|
Hypotheses |
grplinvd.b |
|
|
|
grplinvd.p |
|
|
|
grplinvd.u |
|
|
|
grplinvd.n |
|
|
|
grplinvd.g |
|
|
|
grplinvd.1 |
|
|
Assertion |
grplinvd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
grplinvd.b |
|
2 |
|
grplinvd.p |
|
3 |
|
grplinvd.u |
|
4 |
|
grplinvd.n |
|
5 |
|
grplinvd.g |
|
6 |
|
grplinvd.1 |
|
7 |
1 2 3 4
|
grplinv |
|
8 |
5 6 7
|
syl2anc |
|