Metamath Proof Explorer


Theorem grplrinv

Description: In a group, every member has a left and right inverse. (Contributed by AV, 1-Sep-2021)

Ref Expression
Hypotheses grplrinv.b B = Base G
grplrinv.p + ˙ = + G
grplrinv.i 0 ˙ = 0 G
Assertion grplrinv G Grp x B y B y + ˙ x = 0 ˙ x + ˙ y = 0 ˙

Proof

Step Hyp Ref Expression
1 grplrinv.b B = Base G
2 grplrinv.p + ˙ = + G
3 grplrinv.i 0 ˙ = 0 G
4 eqid inv g G = inv g G
5 1 4 grpinvcl G Grp x B inv g G x B
6 oveq1 y = inv g G x y + ˙ x = inv g G x + ˙ x
7 6 eqeq1d y = inv g G x y + ˙ x = 0 ˙ inv g G x + ˙ x = 0 ˙
8 oveq2 y = inv g G x x + ˙ y = x + ˙ inv g G x
9 8 eqeq1d y = inv g G x x + ˙ y = 0 ˙ x + ˙ inv g G x = 0 ˙
10 7 9 anbi12d y = inv g G x y + ˙ x = 0 ˙ x + ˙ y = 0 ˙ inv g G x + ˙ x = 0 ˙ x + ˙ inv g G x = 0 ˙
11 10 adantl G Grp x B y = inv g G x y + ˙ x = 0 ˙ x + ˙ y = 0 ˙ inv g G x + ˙ x = 0 ˙ x + ˙ inv g G x = 0 ˙
12 1 2 3 4 grplinv G Grp x B inv g G x + ˙ x = 0 ˙
13 1 2 3 4 grprinv G Grp x B x + ˙ inv g G x = 0 ˙
14 12 13 jca G Grp x B inv g G x + ˙ x = 0 ˙ x + ˙ inv g G x = 0 ˙
15 5 11 14 rspcedvd G Grp x B y B y + ˙ x = 0 ˙ x + ˙ y = 0 ˙
16 15 ralrimiva G Grp x B y B y + ˙ x = 0 ˙ x + ˙ y = 0 ˙