Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grplrinv
Next ⟩
grpidinv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
grplrinv
Description:
In a group, every member has a left and right inverse.
(Contributed by
AV
, 1-Sep-2021)
Ref
Expression
Hypotheses
grplrinv.b
⊢
B
=
Base
G
grplrinv.p
⊢
+
˙
=
+
G
grplrinv.i
⊢
0
˙
=
0
G
Assertion
grplrinv
⊢
G
∈
Grp
→
∀
x
∈
B
∃
y
∈
B
y
+
˙
x
=
0
˙
∧
x
+
˙
y
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
grplrinv.b
⊢
B
=
Base
G
2
grplrinv.p
⊢
+
˙
=
+
G
3
grplrinv.i
⊢
0
˙
=
0
G
4
eqid
⊢
inv
g
⁡
G
=
inv
g
⁡
G
5
1
4
grpinvcl
⊢
G
∈
Grp
∧
x
∈
B
→
inv
g
⁡
G
⁡
x
∈
B
6
oveq1
⊢
y
=
inv
g
⁡
G
⁡
x
→
y
+
˙
x
=
inv
g
⁡
G
⁡
x
+
˙
x
7
6
eqeq1d
⊢
y
=
inv
g
⁡
G
⁡
x
→
y
+
˙
x
=
0
˙
↔
inv
g
⁡
G
⁡
x
+
˙
x
=
0
˙
8
oveq2
⊢
y
=
inv
g
⁡
G
⁡
x
→
x
+
˙
y
=
x
+
˙
inv
g
⁡
G
⁡
x
9
8
eqeq1d
⊢
y
=
inv
g
⁡
G
⁡
x
→
x
+
˙
y
=
0
˙
↔
x
+
˙
inv
g
⁡
G
⁡
x
=
0
˙
10
7
9
anbi12d
⊢
y
=
inv
g
⁡
G
⁡
x
→
y
+
˙
x
=
0
˙
∧
x
+
˙
y
=
0
˙
↔
inv
g
⁡
G
⁡
x
+
˙
x
=
0
˙
∧
x
+
˙
inv
g
⁡
G
⁡
x
=
0
˙
11
10
adantl
⊢
G
∈
Grp
∧
x
∈
B
∧
y
=
inv
g
⁡
G
⁡
x
→
y
+
˙
x
=
0
˙
∧
x
+
˙
y
=
0
˙
↔
inv
g
⁡
G
⁡
x
+
˙
x
=
0
˙
∧
x
+
˙
inv
g
⁡
G
⁡
x
=
0
˙
12
1
2
3
4
grplinv
⊢
G
∈
Grp
∧
x
∈
B
→
inv
g
⁡
G
⁡
x
+
˙
x
=
0
˙
13
1
2
3
4
grprinv
⊢
G
∈
Grp
∧
x
∈
B
→
x
+
˙
inv
g
⁡
G
⁡
x
=
0
˙
14
12
13
jca
⊢
G
∈
Grp
∧
x
∈
B
→
inv
g
⁡
G
⁡
x
+
˙
x
=
0
˙
∧
x
+
˙
inv
g
⁡
G
⁡
x
=
0
˙
15
5
11
14
rspcedvd
⊢
G
∈
Grp
∧
x
∈
B
→
∃
y
∈
B
y
+
˙
x
=
0
˙
∧
x
+
˙
y
=
0
˙
16
15
ralrimiva
⊢
G
∈
Grp
→
∀
x
∈
B
∃
y
∈
B
y
+
˙
x
=
0
˙
∧
x
+
˙
y
=
0
˙