Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpmgmd
Next ⟩
dfgrp2
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpmgmd
Description:
A group is a magma, deduction form.
(Contributed by
SN
, 14-Apr-2025)
Ref
Expression
Hypothesis
grpmgmd.g
⊢
φ
→
G
∈
Grp
Assertion
grpmgmd
⊢
φ
→
G
∈
Mgm
Proof
Step
Hyp
Ref
Expression
1
grpmgmd.g
⊢
φ
→
G
∈
Grp
2
1
grpmndd
⊢
φ
→
G
∈
Mnd
3
mndmgm
⊢
G
∈
Mnd
→
G
∈
Mgm
4
2
3
syl
⊢
φ
→
G
∈
Mgm