Metamath Proof Explorer


Theorem grpmgmd

Description: A group is a magma, deduction form. (Contributed by SN, 14-Apr-2025)

Ref Expression
Hypothesis grpmgmd.g φ G Grp
Assertion grpmgmd φ G Mgm

Proof

Step Hyp Ref Expression
1 grpmgmd.g φ G Grp
2 1 grpmndd φ G Mnd
3 mndmgm G Mnd G Mgm
4 2 3 syl φ G Mgm