Metamath Proof Explorer


Theorem grpmnd

Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion grpmnd G Grp G Mnd

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid + G = + G
3 eqid 0 G = 0 G
4 1 2 3 isgrp G Grp G Mnd a Base G m Base G m + G a = 0 G
5 4 simplbi G Grp G Mnd