Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpmnd
Next ⟩
grpcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpmnd
Description:
A group is a monoid.
(Contributed by
Mario Carneiro
, 6-Jan-2015)
Ref
Expression
Assertion
grpmnd
⊢
G
∈
Grp
→
G
∈
Mnd
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
G
=
Base
G
2
eqid
⊢
+
G
=
+
G
3
eqid
⊢
0
G
=
0
G
4
1
2
3
isgrp
⊢
G
∈
Grp
↔
G
∈
Mnd
∧
∀
a
∈
Base
G
∃
m
∈
Base
G
m
+
G
a
=
0
G
5
4
simplbi
⊢
G
∈
Grp
→
G
∈
Mnd