Metamath Proof Explorer


Theorem grpnpncan0

Description: Cancellation law for group subtraction ( npncan2 analog). (Contributed by AV, 24-Nov-2019)

Ref Expression
Hypotheses grpsubadd.b B = Base G
grpsubadd.p + ˙ = + G
grpsubadd.m - ˙ = - G
grpnpncan0.0 0 ˙ = 0 G
Assertion grpnpncan0 G Grp X B Y B X - ˙ Y + ˙ Y - ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 grpsubadd.b B = Base G
2 grpsubadd.p + ˙ = + G
3 grpsubadd.m - ˙ = - G
4 grpnpncan0.0 0 ˙ = 0 G
5 simpl G Grp X B Y B G Grp
6 simprl G Grp X B Y B X B
7 simprr G Grp X B Y B Y B
8 1 2 3 grpnpncan G Grp X B Y B X B X - ˙ Y + ˙ Y - ˙ X = X - ˙ X
9 5 6 7 6 8 syl13anc G Grp X B Y B X - ˙ Y + ˙ Y - ˙ X = X - ˙ X
10 1 4 3 grpsubid G Grp X B X - ˙ X = 0 ˙
11 10 adantrr G Grp X B Y B X - ˙ X = 0 ˙
12 9 11 eqtrd G Grp X B Y B X - ˙ Y + ˙ Y - ˙ X = 0 ˙