Metamath Proof Explorer


Theorem grpo2inv

Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 X = ran G
grpasscan1.2 N = inv G
Assertion grpo2inv G GrpOp A X N N A = A

Proof

Step Hyp Ref Expression
1 grpasscan1.1 X = ran G
2 grpasscan1.2 N = inv G
3 1 2 grpoinvcl G GrpOp A X N A X
4 eqid GId G = GId G
5 1 4 2 grporinv G GrpOp N A X N A G N N A = GId G
6 3 5 syldan G GrpOp A X N A G N N A = GId G
7 1 4 2 grpolinv G GrpOp A X N A G A = GId G
8 6 7 eqtr4d G GrpOp A X N A G N N A = N A G A
9 1 2 grpoinvcl G GrpOp N A X N N A X
10 3 9 syldan G GrpOp A X N N A X
11 simpr G GrpOp A X A X
12 10 11 3 3jca G GrpOp A X N N A X A X N A X
13 1 grpolcan G GrpOp N N A X A X N A X N A G N N A = N A G A N N A = A
14 12 13 syldan G GrpOp A X N A G N N A = N A G A N N A = A
15 8 14 mpbid G GrpOp A X N N A = A