Metamath Proof Explorer


Theorem grpoass

Description: A group operation is associative. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpoass G GrpOp A X B X C X A G B G C = A G B G C

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 1 isgrpo G GrpOp G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
3 2 ibi G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
4 3 simp2d G GrpOp x X y X z X x G y G z = x G y G z
5 oveq1 x = A x G y = A G y
6 5 oveq1d x = A x G y G z = A G y G z
7 oveq1 x = A x G y G z = A G y G z
8 6 7 eqeq12d x = A x G y G z = x G y G z A G y G z = A G y G z
9 oveq2 y = B A G y = A G B
10 9 oveq1d y = B A G y G z = A G B G z
11 oveq1 y = B y G z = B G z
12 11 oveq2d y = B A G y G z = A G B G z
13 10 12 eqeq12d y = B A G y G z = A G y G z A G B G z = A G B G z
14 oveq2 z = C A G B G z = A G B G C
15 oveq2 z = C B G z = B G C
16 15 oveq2d z = C A G B G z = A G B G C
17 14 16 eqeq12d z = C A G B G z = A G B G z A G B G C = A G B G C
18 8 13 17 rspc3v A X B X C X x X y X z X x G y G z = x G y G z A G B G C = A G B G C
19 4 18 mpan9 G GrpOp A X B X C X A G B G C = A G B G C