Metamath Proof Explorer


Theorem grpocl

Description: Closure law for a group operation. (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpocl G GrpOp A X B X A G B X

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 1 grpofo G GrpOp G : X × X onto X
3 fof G : X × X onto X G : X × X X
4 2 3 syl G GrpOp G : X × X X
5 fovrn G : X × X X A X B X A G B X
6 4 5 syl3an1 G GrpOp A X B X A G B X