Metamath Proof Explorer


Theorem grpodivcl

Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
Assertion grpodivcl G GrpOp A X B X A D B X

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 1 2 grpodivf G GrpOp D : X × X X
4 fovrn D : X × X X A X B X A D B X
5 3 4 syl3an1 G GrpOp A X B X A D B X