Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Additional material on group theory (deprecated)
Definitions and basic properties for groups
grpodivdiv
Next ⟩
grpomuldivass
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpodivdiv
Description:
Double group division.
(Contributed by
NM
, 24-Feb-2008)
(New usage is discouraged.)
Ref
Expression
Hypotheses
grpdivf.1
⊢
X
=
ran
⁡
G
grpdivf.3
⊢
D
=
/
g
⁡
G
Assertion
grpodivdiv
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
D
B
D
C
=
A
G
C
D
B
Proof
Step
Hyp
Ref
Expression
1
grpdivf.1
⊢
X
=
ran
⁡
G
2
grpdivf.3
⊢
D
=
/
g
⁡
G
3
simpl
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
G
∈
GrpOp
4
simpr1
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
∈
X
5
1
2
grpodivcl
⊢
G
∈
GrpOp
∧
B
∈
X
∧
C
∈
X
→
B
D
C
∈
X
6
5
3adant3r1
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
B
D
C
∈
X
7
eqid
⊢
inv
⁡
G
=
inv
⁡
G
8
1
7
2
grpodivval
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
D
C
∈
X
→
A
D
B
D
C
=
A
G
inv
⁡
G
⁡
B
D
C
9
3
4
6
8
syl3anc
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
D
B
D
C
=
A
G
inv
⁡
G
⁡
B
D
C
10
1
7
2
grpoinvdiv
⊢
G
∈
GrpOp
∧
B
∈
X
∧
C
∈
X
→
inv
⁡
G
⁡
B
D
C
=
C
D
B
11
10
3adant3r1
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
inv
⁡
G
⁡
B
D
C
=
C
D
B
12
11
oveq2d
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
G
inv
⁡
G
⁡
B
D
C
=
A
G
C
D
B
13
9
12
eqtrd
⊢
G
∈
GrpOp
∧
A
∈
X
∧
B
∈
X
∧
C
∈
X
→
A
D
B
D
C
=
A
G
C
D
B