Metamath Proof Explorer


Theorem grpodivdiv

Description: Double group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
Assertion grpodivdiv G GrpOp A X B X C X A D B D C = A G C D B

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 simpl G GrpOp A X B X C X G GrpOp
4 simpr1 G GrpOp A X B X C X A X
5 1 2 grpodivcl G GrpOp B X C X B D C X
6 5 3adant3r1 G GrpOp A X B X C X B D C X
7 eqid inv G = inv G
8 1 7 2 grpodivval G GrpOp A X B D C X A D B D C = A G inv G B D C
9 3 4 6 8 syl3anc G GrpOp A X B X C X A D B D C = A G inv G B D C
10 1 7 2 grpoinvdiv G GrpOp B X C X inv G B D C = C D B
11 10 3adant3r1 G GrpOp A X B X C X inv G B D C = C D B
12 11 oveq2d G GrpOp A X B X C X A G inv G B D C = A G C D B
13 9 12 eqtrd G GrpOp A X B X C X A D B D C = A G C D B