Metamath Proof Explorer


Theorem grpodivf

Description: Mapping for group division. (Contributed by NM, 10-Apr-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
Assertion grpodivf G GrpOp D : X × X X

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 eqid inv G = inv G
4 1 3 grpoinvcl G GrpOp y X inv G y X
5 4 3adant2 G GrpOp x X y X inv G y X
6 1 grpocl G GrpOp x X inv G y X x G inv G y X
7 5 6 syld3an3 G GrpOp x X y X x G inv G y X
8 7 3expib G GrpOp x X y X x G inv G y X
9 8 ralrimivv G GrpOp x X y X x G inv G y X
10 eqid x X , y X x G inv G y = x X , y X x G inv G y
11 10 fmpo x X y X x G inv G y X x X , y X x G inv G y : X × X X
12 9 11 sylib G GrpOp x X , y X x G inv G y : X × X X
13 1 3 2 grpodivfval G GrpOp D = x X , y X x G inv G y
14 13 feq1d G GrpOp D : X × X X x X , y X x G inv G y : X × X X
15 12 14 mpbird G GrpOp D : X × X X