Metamath Proof Explorer


Theorem grpodivfval

Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X = ran G
grpdiv.2 N = inv G
grpdiv.3 D = / g G
Assertion grpodivfval G GrpOp D = x X , y X x G N y

Proof

Step Hyp Ref Expression
1 grpdiv.1 X = ran G
2 grpdiv.2 N = inv G
3 grpdiv.3 D = / g G
4 rnexg G GrpOp ran G V
5 1 4 eqeltrid G GrpOp X V
6 mpoexga X V X V x X , y X x G N y V
7 5 5 6 syl2anc G GrpOp x X , y X x G N y V
8 rneq g = G ran g = ran G
9 8 1 eqtr4di g = G ran g = X
10 id g = G g = G
11 eqidd g = G x = x
12 fveq2 g = G inv g = inv G
13 12 2 eqtr4di g = G inv g = N
14 13 fveq1d g = G inv g y = N y
15 10 11 14 oveq123d g = G x g inv g y = x G N y
16 9 9 15 mpoeq123dv g = G x ran g , y ran g x g inv g y = x X , y X x G N y
17 df-gdiv / g = g GrpOp x ran g , y ran g x g inv g y
18 16 17 fvmptg G GrpOp x X , y X x G N y V / g G = x X , y X x G N y
19 7 18 mpdan G GrpOp / g G = x X , y X x G N y
20 3 19 syl5eq G GrpOp D = x X , y X x G N y