Metamath Proof Explorer


Theorem grpodivid

Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
grpdivid.3 U = GId G
Assertion grpodivid G GrpOp A X A D A = U

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 grpdivid.3 U = GId G
4 eqid inv G = inv G
5 1 4 2 grpodivval G GrpOp A X A X A D A = A G inv G A
6 5 3anidm23 G GrpOp A X A D A = A G inv G A
7 1 3 4 grporinv G GrpOp A X A G inv G A = U
8 6 7 eqtrd G GrpOp A X A D A = U