Metamath Proof Explorer


Theorem grpodivinv

Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X = ran G
grpdiv.2 N = inv G
grpdiv.3 D = / g G
Assertion grpodivinv G GrpOp A X B X A D N B = A G B

Proof

Step Hyp Ref Expression
1 grpdiv.1 X = ran G
2 grpdiv.2 N = inv G
3 grpdiv.3 D = / g G
4 1 2 grpoinvcl G GrpOp B X N B X
5 4 3adant2 G GrpOp A X B X N B X
6 1 2 3 grpodivval G GrpOp A X N B X A D N B = A G N N B
7 5 6 syld3an3 G GrpOp A X B X A D N B = A G N N B
8 1 2 grpo2inv G GrpOp B X N N B = B
9 8 3adant2 G GrpOp A X B X N N B = B
10 9 oveq2d G GrpOp A X B X A G N N B = A G B
11 7 10 eqtrd G GrpOp A X B X A D N B = A G B