Metamath Proof Explorer


Theorem grpodivval

Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X = ran G
grpdiv.2 N = inv G
grpdiv.3 D = / g G
Assertion grpodivval G GrpOp A X B X A D B = A G N B

Proof

Step Hyp Ref Expression
1 grpdiv.1 X = ran G
2 grpdiv.2 N = inv G
3 grpdiv.3 D = / g G
4 1 2 3 grpodivfval G GrpOp D = x X , y X x G N y
5 4 oveqd G GrpOp A D B = A x X , y X x G N y B
6 oveq1 x = A x G N y = A G N y
7 fveq2 y = B N y = N B
8 7 oveq2d y = B A G N y = A G N B
9 eqid x X , y X x G N y = x X , y X x G N y
10 ovex A G N B V
11 6 8 9 10 ovmpo A X B X A x X , y X x G N y B = A G N B
12 5 11 sylan9eq G GrpOp A X B X A D B = A G N B
13 12 3impb G GrpOp A X B X A D B = A G N B