Metamath Proof Explorer


Theorem grpofo

Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpofo G GrpOp G : X × X onto X

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 1 isgrpo G GrpOp G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
3 2 ibi G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
4 3 simp1d G GrpOp G : X × X X
5 1 eqcomi ran G = X
6 4 5 jctir G GrpOp G : X × X X ran G = X
7 dffo2 G : X × X onto X G : X × X X ran G = X
8 6 7 sylibr G GrpOp G : X × X onto X