Step |
Hyp |
Ref |
Expression |
1 |
|
grpfo.1 |
|
2 |
1
|
grpoidinv |
|
3 |
|
simpll |
|
4 |
3
|
ralimi |
|
5 |
|
oveq2 |
|
6 |
|
id |
|
7 |
5 6
|
eqeq12d |
|
8 |
7
|
cbvralvw |
|
9 |
4 8
|
sylib |
|
10 |
9
|
adantl |
|
11 |
9
|
ad2antlr |
|
12 |
|
simpr |
|
13 |
12
|
ralimi |
|
14 |
|
oveq2 |
|
15 |
14
|
eqeq1d |
|
16 |
|
oveq1 |
|
17 |
16
|
eqeq1d |
|
18 |
15 17
|
anbi12d |
|
19 |
18
|
rexbidv |
|
20 |
19
|
rspcva |
|
21 |
20
|
adantll |
|
22 |
13 21
|
sylan2 |
|
23 |
1
|
grpoidinvlem4 |
|
24 |
22 23
|
syldan |
|
25 |
24
|
an32s |
|
26 |
25
|
adantllr |
|
27 |
26
|
adantr |
|
28 |
|
oveq2 |
|
29 |
|
id |
|
30 |
28 29
|
eqeq12d |
|
31 |
30
|
rspcva |
|
32 |
31
|
adantll |
|
33 |
32
|
ad2ant2rl |
|
34 |
33
|
adantllr |
|
35 |
|
oveq2 |
|
36 |
|
id |
|
37 |
35 36
|
eqeq12d |
|
38 |
37
|
rspcva |
|
39 |
38
|
ad2ant2lr |
|
40 |
27 34 39
|
3eqtr3d |
|
41 |
40
|
ex |
|
42 |
11 41
|
mpand |
|
43 |
42
|
ralrimiva |
|
44 |
10 43
|
jca |
|
45 |
44
|
ex |
|
46 |
45
|
reximdva |
|
47 |
2 46
|
mpd |
|
48 |
|
oveq1 |
|
49 |
48
|
eqeq1d |
|
50 |
49
|
ralbidv |
|
51 |
50
|
reu8 |
|
52 |
47 51
|
sylibr |
|