Metamath Proof Explorer


Theorem grpoidinv2

Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpoidval.1 X = ran G
grpoidval.2 U = GId G
Assertion grpoidinv2 G GrpOp A X U G A = A A G U = A y X y G A = U A G y = U

Proof

Step Hyp Ref Expression
1 grpoidval.1 X = ran G
2 grpoidval.2 U = GId G
3 1 2 grpoidval G GrpOp U = ι u X | x X u G x = x
4 1 grpoideu G GrpOp ∃! u X x X u G x = x
5 riotacl2 ∃! u X x X u G x = x ι u X | x X u G x = x u X | x X u G x = x
6 4 5 syl G GrpOp ι u X | x X u G x = x u X | x X u G x = x
7 3 6 eqeltrd G GrpOp U u X | x X u G x = x
8 simpll u G x = x x G u = x y X y G x = u x G y = u u G x = x
9 8 ralimi x X u G x = x x G u = x y X y G x = u x G y = u x X u G x = x
10 9 rgenw u X x X u G x = x x G u = x y X y G x = u x G y = u x X u G x = x
11 10 a1i G GrpOp u X x X u G x = x x G u = x y X y G x = u x G y = u x X u G x = x
12 1 grpoidinv G GrpOp u X x X u G x = x x G u = x y X y G x = u x G y = u
13 11 12 4 3jca G GrpOp u X x X u G x = x x G u = x y X y G x = u x G y = u x X u G x = x u X x X u G x = x x G u = x y X y G x = u x G y = u ∃! u X x X u G x = x
14 reupick2 u X x X u G x = x x G u = x y X y G x = u x G y = u x X u G x = x u X x X u G x = x x G u = x y X y G x = u x G y = u ∃! u X x X u G x = x u X x X u G x = x x X u G x = x x G u = x y X y G x = u x G y = u
15 13 14 sylan G GrpOp u X x X u G x = x x X u G x = x x G u = x y X y G x = u x G y = u
16 15 rabbidva G GrpOp u X | x X u G x = x = u X | x X u G x = x x G u = x y X y G x = u x G y = u
17 7 16 eleqtrd G GrpOp U u X | x X u G x = x x G u = x y X y G x = u x G y = u
18 oveq1 u = U u G x = U G x
19 18 eqeq1d u = U u G x = x U G x = x
20 oveq2 u = U x G u = x G U
21 20 eqeq1d u = U x G u = x x G U = x
22 19 21 anbi12d u = U u G x = x x G u = x U G x = x x G U = x
23 eqeq2 u = U y G x = u y G x = U
24 eqeq2 u = U x G y = u x G y = U
25 23 24 anbi12d u = U y G x = u x G y = u y G x = U x G y = U
26 25 rexbidv u = U y X y G x = u x G y = u y X y G x = U x G y = U
27 22 26 anbi12d u = U u G x = x x G u = x y X y G x = u x G y = u U G x = x x G U = x y X y G x = U x G y = U
28 27 ralbidv u = U x X u G x = x x G u = x y X y G x = u x G y = u x X U G x = x x G U = x y X y G x = U x G y = U
29 28 elrab U u X | x X u G x = x x G u = x y X y G x = u x G y = u U X x X U G x = x x G U = x y X y G x = U x G y = U
30 17 29 sylib G GrpOp U X x X U G x = x x G U = x y X y G x = U x G y = U
31 30 simprd G GrpOp x X U G x = x x G U = x y X y G x = U x G y = U
32 oveq2 x = A U G x = U G A
33 id x = A x = A
34 32 33 eqeq12d x = A U G x = x U G A = A
35 oveq1 x = A x G U = A G U
36 35 33 eqeq12d x = A x G U = x A G U = A
37 34 36 anbi12d x = A U G x = x x G U = x U G A = A A G U = A
38 oveq2 x = A y G x = y G A
39 38 eqeq1d x = A y G x = U y G A = U
40 oveq1 x = A x G y = A G y
41 40 eqeq1d x = A x G y = U A G y = U
42 39 41 anbi12d x = A y G x = U x G y = U y G A = U A G y = U
43 42 rexbidv x = A y X y G x = U x G y = U y X y G A = U A G y = U
44 37 43 anbi12d x = A U G x = x x G U = x y X y G x = U x G y = U U G A = A A G U = A y X y G A = U A G y = U
45 44 rspccva x X U G x = x x G U = x y X y G x = U x G y = U A X U G A = A A G U = A y X y G A = U A G y = U
46 31 45 sylan G GrpOp A X U G A = A A G U = A y X y G A = U A G y = U