Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Additional material on group theory (deprecated)
Definitions and basic properties for groups
grpoidinvlem1
Next ⟩
grpoidinvlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpoidinvlem1
Description:
Lemma for
grpoidinv
.
(Contributed by
NM
, 10-Oct-2006)
(New usage is discouraged.)
Ref
Expression
Hypothesis
grpfo.1
⊢
X
=
ran
⁡
G
Assertion
grpoidinvlem1
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
U
G
A
=
U
Proof
Step
Hyp
Ref
Expression
1
grpfo.1
⊢
X
=
ran
⁡
G
2
id
⊢
Y
∈
X
∧
A
∈
X
∧
A
∈
X
→
Y
∈
X
∧
A
∈
X
∧
A
∈
X
3
2
3anidm23
⊢
Y
∈
X
∧
A
∈
X
→
Y
∈
X
∧
A
∈
X
∧
A
∈
X
4
1
grpoass
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
A
∈
X
→
Y
G
A
G
A
=
Y
G
A
G
A
5
3
4
sylan2
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
→
Y
G
A
G
A
=
Y
G
A
G
A
6
5
adantr
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
Y
G
A
G
A
=
Y
G
A
G
A
7
oveq1
⊢
Y
G
A
=
U
→
Y
G
A
G
A
=
U
G
A
8
7
ad2antrl
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
Y
G
A
G
A
=
U
G
A
9
oveq2
⊢
A
G
A
=
A
→
Y
G
A
G
A
=
Y
G
A
10
9
ad2antll
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
Y
G
A
G
A
=
Y
G
A
11
simprl
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
Y
G
A
=
U
12
10
11
eqtrd
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
Y
G
A
G
A
=
U
13
6
8
12
3eqtr3d
⊢
G
∈
GrpOp
∧
Y
∈
X
∧
A
∈
X
∧
Y
G
A
=
U
∧
A
G
A
=
A
→
U
G
A
=
U