Metamath Proof Explorer


Theorem grpoidinvlem1

Description: Lemma for grpoidinv . (Contributed by NM, 10-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpoidinvlem1 G GrpOp Y X A X Y G A = U A G A = A U G A = U

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 id Y X A X A X Y X A X A X
3 2 3anidm23 Y X A X Y X A X A X
4 1 grpoass G GrpOp Y X A X A X Y G A G A = Y G A G A
5 3 4 sylan2 G GrpOp Y X A X Y G A G A = Y G A G A
6 5 adantr G GrpOp Y X A X Y G A = U A G A = A Y G A G A = Y G A G A
7 oveq1 Y G A = U Y G A G A = U G A
8 7 ad2antrl G GrpOp Y X A X Y G A = U A G A = A Y G A G A = U G A
9 oveq2 A G A = A Y G A G A = Y G A
10 9 ad2antll G GrpOp Y X A X Y G A = U A G A = A Y G A G A = Y G A
11 simprl G GrpOp Y X A X Y G A = U A G A = A Y G A = U
12 10 11 eqtrd G GrpOp Y X A X Y G A = U A G A = A Y G A G A = U
13 6 8 12 3eqtr3d G GrpOp Y X A X Y G A = U A G A = A U G A = U