Metamath Proof Explorer


Theorem grpoidinvlem4

Description: Lemma for grpoidinv . (Contributed by NM, 14-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpoidinvlem4 G GrpOp A X y X y G A = U A G y = U A G U = U G A

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 simpll G GrpOp A X y X G GrpOp
3 simplr G GrpOp A X y X A X
4 simpr G GrpOp A X y X y X
5 1 grpoass G GrpOp A X y X A X A G y G A = A G y G A
6 2 3 4 3 5 syl13anc G GrpOp A X y X A G y G A = A G y G A
7 oveq2 y G A = U A G y G A = A G U
8 6 7 sylan9eq G GrpOp A X y X y G A = U A G y G A = A G U
9 oveq1 A G y = U A G y G A = U G A
10 8 9 sylan9req G GrpOp A X y X y G A = U A G y = U A G U = U G A
11 10 anasss G GrpOp A X y X y G A = U A G y = U A G U = U G A
12 11 r19.29an G GrpOp A X y X y G A = U A G y = U A G U = U G A