Database
COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)
Additional material on group theory (deprecated)
Definitions and basic properties for groups
grpoidinvlem4
Next ⟩
grpoidinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpoidinvlem4
Description:
Lemma for
grpoidinv
.
(Contributed by
NM
, 14-Oct-2006)
(New usage is discouraged.)
Ref
Expression
Hypothesis
grpfo.1
⊢
X
=
ran
⁡
G
Assertion
grpoidinvlem4
⊢
G
∈
GrpOp
∧
A
∈
X
∧
∃
y
∈
X
y
G
A
=
U
∧
A
G
y
=
U
→
A
G
U
=
U
G
A
Proof
Step
Hyp
Ref
Expression
1
grpfo.1
⊢
X
=
ran
⁡
G
2
simpll
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
→
G
∈
GrpOp
3
simplr
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
→
A
∈
X
4
simpr
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
→
y
∈
X
5
1
grpoass
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
∧
A
∈
X
→
A
G
y
G
A
=
A
G
y
G
A
6
2
3
4
3
5
syl13anc
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
→
A
G
y
G
A
=
A
G
y
G
A
7
oveq2
⊢
y
G
A
=
U
→
A
G
y
G
A
=
A
G
U
8
6
7
sylan9eq
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
∧
y
G
A
=
U
→
A
G
y
G
A
=
A
G
U
9
oveq1
⊢
A
G
y
=
U
→
A
G
y
G
A
=
U
G
A
10
8
9
sylan9req
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
∧
y
G
A
=
U
∧
A
G
y
=
U
→
A
G
U
=
U
G
A
11
10
anasss
⊢
G
∈
GrpOp
∧
A
∈
X
∧
y
∈
X
∧
y
G
A
=
U
∧
A
G
y
=
U
→
A
G
U
=
U
G
A
12
11
r19.29an
⊢
G
∈
GrpOp
∧
A
∈
X
∧
∃
y
∈
X
y
G
A
=
U
∧
A
G
y
=
U
→
A
G
U
=
U
G
A