Metamath Proof Explorer


Theorem grpoinv

Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1 X = ran G
grpinv.2 U = GId G
grpinv.3 N = inv G
Assertion grpoinv G GrpOp A X N A G A = U A G N A = U

Proof

Step Hyp Ref Expression
1 grpinv.1 X = ran G
2 grpinv.2 U = GId G
3 grpinv.3 N = inv G
4 1 2 3 grpoinvval G GrpOp A X N A = ι y X | y G A = U
5 1 2 grpoinveu G GrpOp A X ∃! y X y G A = U
6 riotacl2 ∃! y X y G A = U ι y X | y G A = U y X | y G A = U
7 5 6 syl G GrpOp A X ι y X | y G A = U y X | y G A = U
8 4 7 eqeltrd G GrpOp A X N A y X | y G A = U
9 simpl y G A = U A G y = U y G A = U
10 9 rgenw y X y G A = U A G y = U y G A = U
11 10 a1i G GrpOp A X y X y G A = U A G y = U y G A = U
12 1 2 grpoidinv2 G GrpOp A X U G A = A A G U = A y X y G A = U A G y = U
13 12 simprd G GrpOp A X y X y G A = U A G y = U
14 11 13 5 3jca G GrpOp A X y X y G A = U A G y = U y G A = U y X y G A = U A G y = U ∃! y X y G A = U
15 reupick2 y X y G A = U A G y = U y G A = U y X y G A = U A G y = U ∃! y X y G A = U y X y G A = U y G A = U A G y = U
16 14 15 sylan G GrpOp A X y X y G A = U y G A = U A G y = U
17 16 rabbidva G GrpOp A X y X | y G A = U = y X | y G A = U A G y = U
18 8 17 eleqtrd G GrpOp A X N A y X | y G A = U A G y = U
19 oveq1 y = N A y G A = N A G A
20 19 eqeq1d y = N A y G A = U N A G A = U
21 oveq2 y = N A A G y = A G N A
22 21 eqeq1d y = N A A G y = U A G N A = U
23 20 22 anbi12d y = N A y G A = U A G y = U N A G A = U A G N A = U
24 23 elrab N A y X | y G A = U A G y = U N A X N A G A = U A G N A = U
25 18 24 sylib G GrpOp A X N A X N A G A = U A G N A = U
26 25 simprd G GrpOp A X N A G A = U A G N A = U