Metamath Proof Explorer


Theorem grpoinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvcl.1 X = ran G
grpinvcl.2 N = inv G
Assertion grpoinvcl G GrpOp A X N A X

Proof

Step Hyp Ref Expression
1 grpinvcl.1 X = ran G
2 grpinvcl.2 N = inv G
3 eqid GId G = GId G
4 1 3 2 grpoinvval G GrpOp A X N A = ι y X | y G A = GId G
5 1 3 grpoinveu G GrpOp A X ∃! y X y G A = GId G
6 riotacl ∃! y X y G A = GId G ι y X | y G A = GId G X
7 5 6 syl G GrpOp A X ι y X | y G A = GId G X
8 4 7 eqeltrd G GrpOp A X N A X