Metamath Proof Explorer


Theorem grpoinvdiv

Description: Inverse of a group division. (Contributed by NM, 24-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdiv.1 X = ran G
grpdiv.2 N = inv G
grpdiv.3 D = / g G
Assertion grpoinvdiv G GrpOp A X B X N A D B = B D A

Proof

Step Hyp Ref Expression
1 grpdiv.1 X = ran G
2 grpdiv.2 N = inv G
3 grpdiv.3 D = / g G
4 1 2 3 grpodivval G GrpOp A X B X A D B = A G N B
5 4 fveq2d G GrpOp A X B X N A D B = N A G N B
6 1 2 grpoinvcl G GrpOp B X N B X
7 6 3adant2 G GrpOp A X B X N B X
8 1 2 grpoinvop G GrpOp A X N B X N A G N B = N N B G N A
9 7 8 syld3an3 G GrpOp A X B X N A G N B = N N B G N A
10 1 2 grpo2inv G GrpOp B X N N B = B
11 10 3adant2 G GrpOp A X B X N N B = B
12 11 oveq1d G GrpOp A X B X N N B G N A = B G N A
13 1 2 3 grpodivval G GrpOp B X A X B D A = B G N A
14 13 3com23 G GrpOp A X B X B D A = B G N A
15 12 14 eqtr4d G GrpOp A X B X N N B G N A = B D A
16 5 9 15 3eqtrd G GrpOp A X B X N A D B = B D A