Metamath Proof Explorer


Theorem grpoinveu

Description: The left inverse element of a group is unique. Lemma 2.2.1(b) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpoinveu.1 X = ran G
grpoinveu.2 U = GId G
Assertion grpoinveu G GrpOp A X ∃! y X y G A = U

Proof

Step Hyp Ref Expression
1 grpoinveu.1 X = ran G
2 grpoinveu.2 U = GId G
3 1 2 grpoidinv2 G GrpOp A X U G A = A A G U = A y X y G A = U A G y = U
4 simpl y G A = U A G y = U y G A = U
5 4 reximi y X y G A = U A G y = U y X y G A = U
6 5 adantl U G A = A A G U = A y X y G A = U A G y = U y X y G A = U
7 3 6 syl G GrpOp A X y X y G A = U
8 eqtr3 y G A = U z G A = U y G A = z G A
9 1 grporcan G GrpOp y X z X A X y G A = z G A y = z
10 8 9 syl5ib G GrpOp y X z X A X y G A = U z G A = U y = z
11 10 3exp2 G GrpOp y X z X A X y G A = U z G A = U y = z
12 11 com24 G GrpOp A X z X y X y G A = U z G A = U y = z
13 12 imp41 G GrpOp A X z X y X y G A = U z G A = U y = z
14 13 an32s G GrpOp A X y X z X y G A = U z G A = U y = z
15 14 expd G GrpOp A X y X z X y G A = U z G A = U y = z
16 15 ralrimdva G GrpOp A X y X y G A = U z X z G A = U y = z
17 16 ancld G GrpOp A X y X y G A = U y G A = U z X z G A = U y = z
18 17 reximdva G GrpOp A X y X y G A = U y X y G A = U z X z G A = U y = z
19 7 18 mpd G GrpOp A X y X y G A = U z X z G A = U y = z
20 oveq1 y = z y G A = z G A
21 20 eqeq1d y = z y G A = U z G A = U
22 21 reu8 ∃! y X y G A = U y X y G A = U z X z G A = U y = z
23 19 22 sylibr G GrpOp A X ∃! y X y G A = U