Metamath Proof Explorer


Theorem grpoinvfval

Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvfval.1 X = ran G
grpinvfval.2 U = GId G
grpinvfval.3 N = inv G
Assertion grpoinvfval G GrpOp N = x X ι y X | y G x = U

Proof

Step Hyp Ref Expression
1 grpinvfval.1 X = ran G
2 grpinvfval.2 U = GId G
3 grpinvfval.3 N = inv G
4 rnexg G GrpOp ran G V
5 1 4 eqeltrid G GrpOp X V
6 mptexg X V x X ι y X | y G x = U V
7 5 6 syl G GrpOp x X ι y X | y G x = U V
8 rneq g = G ran g = ran G
9 8 1 eqtr4di g = G ran g = X
10 oveq g = G y g x = y G x
11 fveq2 g = G GId g = GId G
12 11 2 eqtr4di g = G GId g = U
13 10 12 eqeq12d g = G y g x = GId g y G x = U
14 9 13 riotaeqbidv g = G ι y ran g | y g x = GId g = ι y X | y G x = U
15 9 14 mpteq12dv g = G x ran g ι y ran g | y g x = GId g = x X ι y X | y G x = U
16 df-ginv inv = g GrpOp x ran g ι y ran g | y g x = GId g
17 15 16 fvmptg G GrpOp x X ι y X | y G x = U V inv G = x X ι y X | y G x = U
18 7 17 mpdan G GrpOp inv G = x X ι y X | y G x = U
19 3 18 syl5eq G GrpOp N = x X ι y X | y G x = U