Metamath Proof Explorer


Theorem grpoinvid1

Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1 X = ran G
grpinv.2 U = GId G
grpinv.3 N = inv G
Assertion grpoinvid1 G GrpOp A X B X N A = B A G B = U

Proof

Step Hyp Ref Expression
1 grpinv.1 X = ran G
2 grpinv.2 U = GId G
3 grpinv.3 N = inv G
4 oveq2 N A = B A G N A = A G B
5 4 adantl G GrpOp A X B X N A = B A G N A = A G B
6 1 2 3 grporinv G GrpOp A X A G N A = U
7 6 3adant3 G GrpOp A X B X A G N A = U
8 7 adantr G GrpOp A X B X N A = B A G N A = U
9 5 8 eqtr3d G GrpOp A X B X N A = B A G B = U
10 oveq2 A G B = U N A G A G B = N A G U
11 10 adantl G GrpOp A X B X A G B = U N A G A G B = N A G U
12 1 2 3 grpolinv G GrpOp A X N A G A = U
13 12 oveq1d G GrpOp A X N A G A G B = U G B
14 13 3adant3 G GrpOp A X B X N A G A G B = U G B
15 1 3 grpoinvcl G GrpOp A X N A X
16 15 adantrr G GrpOp A X B X N A X
17 simprl G GrpOp A X B X A X
18 simprr G GrpOp A X B X B X
19 16 17 18 3jca G GrpOp A X B X N A X A X B X
20 1 grpoass G GrpOp N A X A X B X N A G A G B = N A G A G B
21 19 20 syldan G GrpOp A X B X N A G A G B = N A G A G B
22 21 3impb G GrpOp A X B X N A G A G B = N A G A G B
23 14 22 eqtr3d G GrpOp A X B X U G B = N A G A G B
24 1 2 grpolid G GrpOp B X U G B = B
25 24 3adant2 G GrpOp A X B X U G B = B
26 23 25 eqtr3d G GrpOp A X B X N A G A G B = B
27 26 adantr G GrpOp A X B X A G B = U N A G A G B = B
28 1 2 grporid G GrpOp N A X N A G U = N A
29 15 28 syldan G GrpOp A X N A G U = N A
30 29 3adant3 G GrpOp A X B X N A G U = N A
31 30 adantr G GrpOp A X B X A G B = U N A G U = N A
32 11 27 31 3eqtr3rd G GrpOp A X B X A G B = U N A = B
33 9 32 impbida G GrpOp A X B X N A = B A G B = U