Metamath Proof Explorer


Theorem grpoinvid2

Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpinv.1 X = ran G
grpinv.2 U = GId G
grpinv.3 N = inv G
Assertion grpoinvid2 G GrpOp A X B X N A = B B G A = U

Proof

Step Hyp Ref Expression
1 grpinv.1 X = ran G
2 grpinv.2 U = GId G
3 grpinv.3 N = inv G
4 oveq1 N A = B N A G A = B G A
5 4 adantl G GrpOp A X B X N A = B N A G A = B G A
6 1 2 3 grpolinv G GrpOp A X N A G A = U
7 6 3adant3 G GrpOp A X B X N A G A = U
8 7 adantr G GrpOp A X B X N A = B N A G A = U
9 5 8 eqtr3d G GrpOp A X B X N A = B B G A = U
10 1 3 grpoinvcl G GrpOp A X N A X
11 1 2 grpolid G GrpOp N A X U G N A = N A
12 10 11 syldan G GrpOp A X U G N A = N A
13 12 3adant3 G GrpOp A X B X U G N A = N A
14 13 eqcomd G GrpOp A X B X N A = U G N A
15 14 adantr G GrpOp A X B X B G A = U N A = U G N A
16 oveq1 B G A = U B G A G N A = U G N A
17 16 adantl G GrpOp A X B X B G A = U B G A G N A = U G N A
18 simprr G GrpOp A X B X B X
19 simprl G GrpOp A X B X A X
20 10 adantrr G GrpOp A X B X N A X
21 18 19 20 3jca G GrpOp A X B X B X A X N A X
22 1 grpoass G GrpOp B X A X N A X B G A G N A = B G A G N A
23 21 22 syldan G GrpOp A X B X B G A G N A = B G A G N A
24 23 3impb G GrpOp A X B X B G A G N A = B G A G N A
25 1 2 3 grporinv G GrpOp A X A G N A = U
26 25 oveq2d G GrpOp A X B G A G N A = B G U
27 26 3adant3 G GrpOp A X B X B G A G N A = B G U
28 1 2 grporid G GrpOp B X B G U = B
29 28 3adant2 G GrpOp A X B X B G U = B
30 24 27 29 3eqtrd G GrpOp A X B X B G A G N A = B
31 30 adantr G GrpOp A X B X B G A = U B G A G N A = B
32 15 17 31 3eqtr2d G GrpOp A X B X B G A = U N A = B
33 9 32 impbida G GrpOp A X B X N A = B B G A = U