Metamath Proof Explorer


Theorem grpoinvval

Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvfval.1 X = ran G
grpinvfval.2 U = GId G
grpinvfval.3 N = inv G
Assertion grpoinvval G GrpOp A X N A = ι y X | y G A = U

Proof

Step Hyp Ref Expression
1 grpinvfval.1 X = ran G
2 grpinvfval.2 U = GId G
3 grpinvfval.3 N = inv G
4 1 2 3 grpoinvfval G GrpOp N = x X ι y X | y G x = U
5 4 fveq1d G GrpOp N A = x X ι y X | y G x = U A
6 oveq2 x = A y G x = y G A
7 6 eqeq1d x = A y G x = U y G A = U
8 7 riotabidv x = A ι y X | y G x = U = ι y X | y G A = U
9 eqid x X ι y X | y G x = U = x X ι y X | y G x = U
10 riotaex ι y X | y G A = U V
11 8 9 10 fvmpt A X x X ι y X | y G x = U A = ι y X | y G A = U
12 5 11 sylan9eq G GrpOp A X N A = ι y X | y G A = U