Metamath Proof Explorer


Theorem grpokerinj

Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses grpkerinj.1 X = ran G
grpkerinj.2 W = GId G
grpkerinj.3 Y = ran H
grpkerinj.4 U = GId H
Assertion grpokerinj G GrpOp H GrpOp F G GrpOpHom H F : X 1-1 Y F -1 U = W

Proof

Step Hyp Ref Expression
1 grpkerinj.1 X = ran G
2 grpkerinj.2 W = GId G
3 grpkerinj.3 Y = ran H
4 grpkerinj.4 U = GId H
5 2 4 ghomidOLD G GrpOp H GrpOp F G GrpOpHom H F W = U
6 5 sneqd G GrpOp H GrpOp F G GrpOpHom H F W = U
7 1 3 ghomf G GrpOp H GrpOp F G GrpOpHom H F : X Y
8 7 ffnd G GrpOp H GrpOp F G GrpOpHom H F Fn X
9 1 2 grpoidcl G GrpOp W X
10 9 3ad2ant1 G GrpOp H GrpOp F G GrpOpHom H W X
11 fnsnfv F Fn X W X F W = F W
12 8 10 11 syl2anc G GrpOp H GrpOp F G GrpOpHom H F W = F W
13 6 12 eqtr3d G GrpOp H GrpOp F G GrpOpHom H U = F W
14 13 imaeq2d G GrpOp H GrpOp F G GrpOpHom H F -1 U = F -1 F W
15 14 adantl F : X 1-1 Y G GrpOp H GrpOp F G GrpOpHom H F -1 U = F -1 F W
16 9 snssd G GrpOp W X
17 16 3ad2ant1 G GrpOp H GrpOp F G GrpOpHom H W X
18 f1imacnv F : X 1-1 Y W X F -1 F W = W
19 17 18 sylan2 F : X 1-1 Y G GrpOp H GrpOp F G GrpOpHom H F -1 F W = W
20 15 19 eqtrd F : X 1-1 Y G GrpOp H GrpOp F G GrpOpHom H F -1 U = W
21 20 expcom G GrpOp H GrpOp F G GrpOpHom H F : X 1-1 Y F -1 U = W
22 7 adantr G GrpOp H GrpOp F G GrpOpHom H F -1 U = W F : X Y
23 simpl2 G GrpOp H GrpOp F G GrpOpHom H x X y X H GrpOp
24 7 ffvelrnda G GrpOp H GrpOp F G GrpOpHom H x X F x Y
25 24 adantrr G GrpOp H GrpOp F G GrpOpHom H x X y X F x Y
26 7 ffvelrnda G GrpOp H GrpOp F G GrpOpHom H y X F y Y
27 26 adantrl G GrpOp H GrpOp F G GrpOpHom H x X y X F y Y
28 eqid / g H = / g H
29 3 4 28 grpoeqdivid H GrpOp F x Y F y Y F x = F y F x / g H F y = U
30 23 25 27 29 syl3anc G GrpOp H GrpOp F G GrpOpHom H x X y X F x = F y F x / g H F y = U
31 30 adantlr G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x = F y F x / g H F y = U
32 eqid / g G = / g G
33 1 32 28 ghomdiv G GrpOp H GrpOp F G GrpOpHom H x X y X F x / g G y = F x / g H F y
34 33 adantlr G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g G y = F x / g H F y
35 34 eqeq1d G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g G y = U F x / g H F y = U
36 4 fvexi U V
37 36 snid U U
38 eleq1 F x / g G y = U F x / g G y U U U
39 37 38 mpbiri F x / g G y = U F x / g G y U
40 7 ffund G GrpOp H GrpOp F G GrpOpHom H Fun F
41 40 adantr G GrpOp H GrpOp F G GrpOpHom H x X y X Fun F
42 1 32 grpodivcl G GrpOp x X y X x / g G y X
43 42 3expb G GrpOp x X y X x / g G y X
44 43 3ad2antl1 G GrpOp H GrpOp F G GrpOpHom H x X y X x / g G y X
45 7 fdmd G GrpOp H GrpOp F G GrpOpHom H dom F = X
46 45 adantr G GrpOp H GrpOp F G GrpOpHom H x X y X dom F = X
47 44 46 eleqtrrd G GrpOp H GrpOp F G GrpOpHom H x X y X x / g G y dom F
48 fvimacnv Fun F x / g G y dom F F x / g G y U x / g G y F -1 U
49 41 47 48 syl2anc G GrpOp H GrpOp F G GrpOpHom H x X y X F x / g G y U x / g G y F -1 U
50 eleq2 F -1 U = W x / g G y F -1 U x / g G y W
51 49 50 sylan9bb G GrpOp H GrpOp F G GrpOpHom H x X y X F -1 U = W F x / g G y U x / g G y W
52 51 an32s G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g G y U x / g G y W
53 elsni x / g G y W x / g G y = W
54 1 2 32 grpoeqdivid G GrpOp x X y X x = y x / g G y = W
55 54 biimprd G GrpOp x X y X x / g G y = W x = y
56 55 3expb G GrpOp x X y X x / g G y = W x = y
57 56 3ad2antl1 G GrpOp H GrpOp F G GrpOpHom H x X y X x / g G y = W x = y
58 53 57 syl5 G GrpOp H GrpOp F G GrpOpHom H x X y X x / g G y W x = y
59 58 adantlr G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X x / g G y W x = y
60 52 59 sylbid G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g G y U x = y
61 39 60 syl5 G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g G y = U x = y
62 35 61 sylbird G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x / g H F y = U x = y
63 31 62 sylbid G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x = F y x = y
64 63 ralrimivva G GrpOp H GrpOp F G GrpOpHom H F -1 U = W x X y X F x = F y x = y
65 dff13 F : X 1-1 Y F : X Y x X y X F x = F y x = y
66 22 64 65 sylanbrc G GrpOp H GrpOp F G GrpOpHom H F -1 U = W F : X 1-1 Y
67 66 ex G GrpOp H GrpOp F G GrpOpHom H F -1 U = W F : X 1-1 Y
68 21 67 impbid G GrpOp H GrpOp F G GrpOpHom H F : X 1-1 Y F -1 U = W