Metamath Proof Explorer


Theorem grpolcan

Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grplcan.1 X = ran G
Assertion grpolcan G GrpOp A X B X C X C G A = C G B A = B

Proof

Step Hyp Ref Expression
1 grplcan.1 X = ran G
2 oveq2 C G A = C G B inv G C G C G A = inv G C G C G B
3 2 adantl G GrpOp A X B X C X C G A = C G B inv G C G C G A = inv G C G C G B
4 eqid GId G = GId G
5 eqid inv G = inv G
6 1 4 5 grpolinv G GrpOp C X inv G C G C = GId G
7 6 adantlr G GrpOp A X C X inv G C G C = GId G
8 7 oveq1d G GrpOp A X C X inv G C G C G A = GId G G A
9 1 5 grpoinvcl G GrpOp C X inv G C X
10 9 adantrl G GrpOp A X C X inv G C X
11 simprr G GrpOp A X C X C X
12 simprl G GrpOp A X C X A X
13 10 11 12 3jca G GrpOp A X C X inv G C X C X A X
14 1 grpoass G GrpOp inv G C X C X A X inv G C G C G A = inv G C G C G A
15 13 14 syldan G GrpOp A X C X inv G C G C G A = inv G C G C G A
16 15 anassrs G GrpOp A X C X inv G C G C G A = inv G C G C G A
17 1 4 grpolid G GrpOp A X GId G G A = A
18 17 adantr G GrpOp A X C X GId G G A = A
19 8 16 18 3eqtr3d G GrpOp A X C X inv G C G C G A = A
20 19 adantrl G GrpOp A X B X C X inv G C G C G A = A
21 20 adantr G GrpOp A X B X C X C G A = C G B inv G C G C G A = A
22 6 adantrl G GrpOp B X C X inv G C G C = GId G
23 22 oveq1d G GrpOp B X C X inv G C G C G B = GId G G B
24 9 adantrl G GrpOp B X C X inv G C X
25 simprr G GrpOp B X C X C X
26 simprl G GrpOp B X C X B X
27 24 25 26 3jca G GrpOp B X C X inv G C X C X B X
28 1 grpoass G GrpOp inv G C X C X B X inv G C G C G B = inv G C G C G B
29 27 28 syldan G GrpOp B X C X inv G C G C G B = inv G C G C G B
30 1 4 grpolid G GrpOp B X GId G G B = B
31 30 adantrr G GrpOp B X C X GId G G B = B
32 23 29 31 3eqtr3d G GrpOp B X C X inv G C G C G B = B
33 32 adantlr G GrpOp A X B X C X inv G C G C G B = B
34 33 adantr G GrpOp A X B X C X C G A = C G B inv G C G C G B = B
35 3 21 34 3eqtr3d G GrpOp A X B X C X C G A = C G B A = B
36 35 exp53 G GrpOp A X B X C X C G A = C G B A = B
37 36 3imp2 G GrpOp A X B X C X C G A = C G B A = B
38 oveq2 A = B C G A = C G B
39 37 38 impbid1 G GrpOp A X B X C X C G A = C G B A = B