Metamath Proof Explorer


Theorem grpolidinv

Description: A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grpfo.1 X = ran G
Assertion grpolidinv G GrpOp u X x X u G x = x y X y G x = u

Proof

Step Hyp Ref Expression
1 grpfo.1 X = ran G
2 1 isgrpo G GrpOp G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
3 2 ibi G GrpOp G : X × X X x X y X z X x G y G z = x G y G z u X x X u G x = x y X y G x = u
4 3 simp3d G GrpOp u X x X u G x = x y X y G x = u