Metamath Proof Explorer


Theorem grpomuldivass

Description: Associative-type law for multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
Assertion grpomuldivass G GrpOp A X B X C X A G B D C = A G B D C

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 simpr1 G GrpOp A X B X C X A X
4 simpr2 G GrpOp A X B X C X B X
5 eqid inv G = inv G
6 1 5 grpoinvcl G GrpOp C X inv G C X
7 6 3ad2antr3 G GrpOp A X B X C X inv G C X
8 3 4 7 3jca G GrpOp A X B X C X A X B X inv G C X
9 1 grpoass G GrpOp A X B X inv G C X A G B G inv G C = A G B G inv G C
10 8 9 syldan G GrpOp A X B X C X A G B G inv G C = A G B G inv G C
11 simpl G GrpOp A X B X C X G GrpOp
12 1 grpocl G GrpOp A X B X A G B X
13 12 3adant3r3 G GrpOp A X B X C X A G B X
14 simpr3 G GrpOp A X B X C X C X
15 1 5 2 grpodivval G GrpOp A G B X C X A G B D C = A G B G inv G C
16 11 13 14 15 syl3anc G GrpOp A X B X C X A G B D C = A G B G inv G C
17 1 5 2 grpodivval G GrpOp B X C X B D C = B G inv G C
18 17 3adant3r1 G GrpOp A X B X C X B D C = B G inv G C
19 18 oveq2d G GrpOp A X B X C X A G B D C = A G B G inv G C
20 10 16 19 3eqtr4d G GrpOp A X B X C X A G B D C = A G B D C