Metamath Proof Explorer


Theorem grponpcan

Description: Cancellation law for group division. ( npcan analog.) (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X = ran G
grpdivf.3 D = / g G
Assertion grponpcan G GrpOp A X B X A D B G B = A

Proof

Step Hyp Ref Expression
1 grpdivf.1 X = ran G
2 grpdivf.3 D = / g G
3 eqid inv G = inv G
4 1 3 2 grpodivval G GrpOp A X B X A D B = A G inv G B
5 4 oveq1d G GrpOp A X B X A D B G B = A G inv G B G B
6 simp1 G GrpOp A X B X G GrpOp
7 simp2 G GrpOp A X B X A X
8 1 3 grpoinvcl G GrpOp B X inv G B X
9 8 3adant2 G GrpOp A X B X inv G B X
10 simp3 G GrpOp A X B X B X
11 1 grpoass G GrpOp A X inv G B X B X A G inv G B G B = A G inv G B G B
12 6 7 9 10 11 syl13anc G GrpOp A X B X A G inv G B G B = A G inv G B G B
13 eqid GId G = GId G
14 1 13 3 grpolinv G GrpOp B X inv G B G B = GId G
15 14 oveq2d G GrpOp B X A G inv G B G B = A G GId G
16 15 3adant2 G GrpOp A X B X A G inv G B G B = A G GId G
17 1 13 grporid G GrpOp A X A G GId G = A
18 17 3adant3 G GrpOp A X B X A G GId G = A
19 16 18 eqtrd G GrpOp A X B X A G inv G B G B = A
20 12 19 eqtrd G GrpOp A X B X A G inv G B G B = A
21 5 20 eqtrd G GrpOp A X B X A D B G B = A