| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grprcan.1 |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
grpoidinv2 |
|
| 4 |
|
simpr |
|
| 5 |
4
|
reximi |
|
| 6 |
5
|
adantl |
|
| 7 |
3 6
|
syl |
|
| 8 |
7
|
ad2ant2rl |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
ad2antll |
|
| 11 |
1
|
grpoass |
|
| 12 |
11
|
3anassrs |
|
| 13 |
12
|
adantlrl |
|
| 14 |
13
|
adantrr |
|
| 15 |
1
|
grpoass |
|
| 16 |
15
|
3exp2 |
|
| 17 |
16
|
imp42 |
|
| 18 |
17
|
adantllr |
|
| 19 |
18
|
adantrr |
|
| 20 |
10 14 19
|
3eqtr3d |
|
| 21 |
20
|
adantrrl |
|
| 22 |
|
oveq2 |
|
| 23 |
22
|
ad2antrl |
|
| 24 |
23
|
adantl |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
ad2antrl |
|
| 27 |
26
|
adantl |
|
| 28 |
21 24 27
|
3eqtr3d |
|
| 29 |
1 2
|
grporid |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
1 2
|
grporid |
|
| 32 |
31
|
ad2ant2r |
|
| 33 |
32
|
adantr |
|
| 34 |
28 30 33
|
3eqtr3d |
|
| 35 |
34
|
exp45 |
|
| 36 |
35
|
rexlimdv |
|
| 37 |
8 36
|
mpd |
|
| 38 |
|
oveq1 |
|
| 39 |
37 38
|
impbid1 |
|
| 40 |
39
|
exp43 |
|
| 41 |
40
|
3imp2 |
|