Metamath Proof Explorer


Theorem grporcan

Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypothesis grprcan.1 X = ran G
Assertion grporcan G GrpOp A X B X C X A G C = B G C A = B

Proof

Step Hyp Ref Expression
1 grprcan.1 X = ran G
2 eqid GId G = GId G
3 1 2 grpoidinv2 G GrpOp C X GId G G C = C C G GId G = C y X y G C = GId G C G y = GId G
4 simpr y G C = GId G C G y = GId G C G y = GId G
5 4 reximi y X y G C = GId G C G y = GId G y X C G y = GId G
6 5 adantl GId G G C = C C G GId G = C y X y G C = GId G C G y = GId G y X C G y = GId G
7 3 6 syl G GrpOp C X y X C G y = GId G
8 7 ad2ant2rl G GrpOp A X B X C X y X C G y = GId G
9 oveq1 A G C = B G C A G C G y = B G C G y
10 9 ad2antll G GrpOp A X B X C X y X A G C = B G C A G C G y = B G C G y
11 1 grpoass G GrpOp A X C X y X A G C G y = A G C G y
12 11 3anassrs G GrpOp A X C X y X A G C G y = A G C G y
13 12 adantlrl G GrpOp A X B X C X y X A G C G y = A G C G y
14 13 adantrr G GrpOp A X B X C X y X A G C = B G C A G C G y = A G C G y
15 1 grpoass G GrpOp B X C X y X B G C G y = B G C G y
16 15 3exp2 G GrpOp B X C X y X B G C G y = B G C G y
17 16 imp42 G GrpOp B X C X y X B G C G y = B G C G y
18 17 adantllr G GrpOp A X B X C X y X B G C G y = B G C G y
19 18 adantrr G GrpOp A X B X C X y X A G C = B G C B G C G y = B G C G y
20 10 14 19 3eqtr3d G GrpOp A X B X C X y X A G C = B G C A G C G y = B G C G y
21 20 adantrrl G GrpOp A X B X C X y X C G y = GId G A G C = B G C A G C G y = B G C G y
22 oveq2 C G y = GId G A G C G y = A G GId G
23 22 ad2antrl y X C G y = GId G A G C = B G C A G C G y = A G GId G
24 23 adantl G GrpOp A X B X C X y X C G y = GId G A G C = B G C A G C G y = A G GId G
25 oveq2 C G y = GId G B G C G y = B G GId G
26 25 ad2antrl y X C G y = GId G A G C = B G C B G C G y = B G GId G
27 26 adantl G GrpOp A X B X C X y X C G y = GId G A G C = B G C B G C G y = B G GId G
28 21 24 27 3eqtr3d G GrpOp A X B X C X y X C G y = GId G A G C = B G C A G GId G = B G GId G
29 1 2 grporid G GrpOp A X A G GId G = A
30 29 ad2antrr G GrpOp A X B X C X y X C G y = GId G A G C = B G C A G GId G = A
31 1 2 grporid G GrpOp B X B G GId G = B
32 31 ad2ant2r G GrpOp A X B X C X B G GId G = B
33 32 adantr G GrpOp A X B X C X y X C G y = GId G A G C = B G C B G GId G = B
34 28 30 33 3eqtr3d G GrpOp A X B X C X y X C G y = GId G A G C = B G C A = B
35 34 exp45 G GrpOp A X B X C X y X C G y = GId G A G C = B G C A = B
36 35 rexlimdv G GrpOp A X B X C X y X C G y = GId G A G C = B G C A = B
37 8 36 mpd G GrpOp A X B X C X A G C = B G C A = B
38 oveq1 A = B A G C = B G C
39 37 38 impbid1 G GrpOp A X B X C X A G C = B G C A = B
40 39 exp43 G GrpOp A X B X C X A G C = B G C A = B
41 40 3imp2 G GrpOp A X B X C X A G C = B G C A = B