Metamath Proof Explorer


Theorem grposnOLD

Description: The group operation for the singleton group. Obsolete, use grp1 . instead. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis grposnOLD.1 A V
Assertion grposnOLD A A A GrpOp

Proof

Step Hyp Ref Expression
1 grposnOLD.1 A V
2 snex A V
3 opex A A V
4 3 1 f1osn A A A : A A 1-1 onto A
5 f1of A A A : A A 1-1 onto A A A A : A A A
6 4 5 ax-mp A A A : A A A
7 1 1 xpsn A × A = A A
8 7 feq2i A A A : A × A A A A A : A A A
9 6 8 mpbir A A A : A × A A
10 velsn x A x = A
11 velsn y A y = A
12 velsn z A z = A
13 oveq2 z = A x A A A y A A A z = x A A A y A A A A
14 oveq1 x = A x A A A y = A A A A y
15 oveq2 y = A A A A A y = A A A A A
16 df-ov A A A A A = A A A A A
17 3 1 fvsn A A A A A = A
18 16 17 eqtri A A A A A = A
19 15 18 eqtrdi y = A A A A A y = A
20 14 19 sylan9eq x = A y = A x A A A y = A
21 20 oveq1d x = A y = A x A A A y A A A A = A A A A A
22 21 18 eqtrdi x = A y = A x A A A y A A A A = A
23 13 22 sylan9eqr x = A y = A z = A x A A A y A A A z = A
24 23 3impa x = A y = A z = A x A A A y A A A z = A
25 oveq1 x = A x A A A y A A A z = A A A A y A A A z
26 oveq1 y = A y A A A z = A A A A z
27 oveq2 z = A A A A A z = A A A A A
28 27 18 eqtrdi z = A A A A A z = A
29 26 28 sylan9eq y = A z = A y A A A z = A
30 29 oveq2d y = A z = A A A A A y A A A z = A A A A A
31 30 18 eqtrdi y = A z = A A A A A y A A A z = A
32 25 31 sylan9eq x = A y = A z = A x A A A y A A A z = A
33 32 3impb x = A y = A z = A x A A A y A A A z = A
34 24 33 eqtr4d x = A y = A z = A x A A A y A A A z = x A A A y A A A z
35 10 11 12 34 syl3anb x A y A z A x A A A y A A A z = x A A A y A A A z
36 1 snid A A
37 oveq2 x = A A A A A x = A A A A A
38 37 18 eqtrdi x = A A A A A x = A
39 id x = A x = A
40 38 39 eqtr4d x = A A A A A x = x
41 10 40 sylbi x A A A A A x = x
42 36 a1i x A A A
43 10 38 sylbi x A A A A A x = A
44 2 9 35 36 41 42 43 isgrpoi A A A GrpOp