Metamath Proof Explorer


Theorem grpplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grpplusf.1 B = Base G
grpplusf.2 F = + 𝑓 G
Assertion grpplusf G Grp F : B × B B

Proof

Step Hyp Ref Expression
1 grpplusf.1 B = Base G
2 grpplusf.2 F = + 𝑓 G
3 grpmnd G Grp G Mnd
4 1 2 mndplusf G Mnd F : B × B B
5 3 4 syl G Grp F : B × B B